A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice

نویسندگان

  • Surawee Chuaiphichai
  • Mark J Crabtree
  • Eileen Mcneill
  • Ashley B Hale
  • Lucy Trelfa
  • Keith M Channon
  • Gillian Douglas
چکیده

BACKGROUND AND PURPOSE The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS-derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell-specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4-dependent eNOS regulation, eNOS-derived NO and ROS generation. EXPERIMENTAL APPROACH The reactivity of mouse second-order mesenteric arteries was assessed by wire myography. High performance liquid chromatography was used to determine BH4, BH2 and biopterin. Western blotting was used for expression analysis. KEY RESULTS Gch1fl/fl Tie2cre mice demonstrated reduced GTPCH protein and BH4 levels in mesenteric arteries. Deficiency in endothelial cell BH4 leads to eNOS uncoupling, increased ROS production and loss of NO generation in mesenteric arteries of Gch1fl/fl Tie2cre mice. Gch1fl/fl Tie2cre mesenteric arteries had enhanced vasoconstriction to U46619 and phenylephrine, which was abolished by L-NAME. Endothelium-dependent vasodilatations to ACh and SLIGRL were impaired in mesenteric arteries from Gch1fl/fl Tie2cre mice, compared with those from wild-type littermates. Loss of eNOS-derived NO-mediated vasodilatation was associated with increased eNOS-derived H2 O2 and cyclooxygenase-derived vasodilator in Gch1fl/fl Tie2cre mesenteric arteries. CONCLUSIONS AND IMPLICATIONS Endothelial cell Gch1 and BH4-dependent eNOS regulation play pivotal roles in maintaining vascular homeostasis in resistance arteries. Therefore, targeting vascular Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of microvascular dysfunction in patients with cardiovascular disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity.

In cultured endothelial cells, the antioxidant, L-ascorbic acid (vitamin C), increases nitric oxide synthase (NOS) enzyme activity via chemical stabilization of tetrahydrobiopterin. Our objective was to determine the effect of vitamin C on NOS function and tetrahydrobiopterin metabolism in vivo. Twenty-six to twenty-eight weeks of diet supplementation with vitamin C (1%/kg chow) significantly i...

متن کامل

Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension☆

Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium deriv...

متن کامل

Vascular endothelial dysfunction: does tetrahydrobiopterin play a role?

Tetrahydrobiopterin is one of the most potent naturally occurring reducing agents and an essential cofactor required for enzymatic activity of nitric oxide synthase (NOS). The exact role of tetrahydrobiopterin in the control of NOS catalytic activity is not completely understood. Existing evidence suggests that it can act as allosteric and redox cofactors. Suboptimal concentration of tetrahydro...

متن کامل

Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation.

Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) function and NO generation. Augmentation of BH4 levels can prevent eNOS uncoupling and can improve endothelial dysfunction in vascular disease states. However, the physiological requirement for de novo endothelial cell BH4 biosynthesis in eNOS function remains unclear. We generated a novel mouse mode...

متن کامل

Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin.

BACKGROUND Altered endothelial cell nitric oxide (NO(*)) production in atherosclerosis may be due to a reduction of intracellular tetrahydrobiopterin, which is a critical cofactor for NO synthase (NOS). In addition, previous literature suggests that inactivation of NO(*) by increased vascular production superoxide (O(2)(*-)) also reduces NO(*) bioactivity in several disease states. We sought to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 174  شماره 

صفحات  -

تاریخ انتشار 2017